
Ne Calculations

1. Linkage Disequilibrium Method

(1) Robin S. Waples, “A bias correction for estimates of effective population size based
on linkage disequilibrium at unlinked gene loci,” Conserv Genet 7: 167–184 (2006).

(2) AT Jones, JR Ovenden and Y-G Wang, “Improved confidence intervals for the
linkage disequilibrium method for estimating effective population size,” Heredity
(2016), 1–7.

(a) Review of LDNe (The calculations below are for random mating model.)

Let k be the number of polymorphic loci. For a pair of loci (i, j), i < j, let Sij be the sample
size at two loci (the number of individuals having data at both loci), then the expected r̂2-sample
is calculated by

E(r̂2ij) =

{
1/Sij + 3.19/S2

ij if Sij ≥ 30,

0.0018 + 0.907/Sij + 4.44/S2
ij otherwise.

(1.1)

Let

nij = (ni − 1)(nj − 1) (ni, nj are the numbers of alleles at loci i, j, respectively).

The nij are used as a weight for calculating the weighted harmonic sample size S of all Sij :

N

S
=

k−1∑
i=1

k∑
j=i+1

nij

Sij
, where N =

k−1∑
i=1

k∑
j=i+1

nij . (1.2)

The expected R̂2-sample in the output for LDNe is calculated from S using formula (1.1).

E(R̂2) =

{
1/S + 3.19/S2 if S ≥ 30,
0.0018 + 0.907/S + 4.44/S2 otherwise.

(1.3)

For the Burrows correlation r̂2 at pair loci (i, j), the weight is taken to be

wij = nijS
2
ij . (1.4)

1



With these weights for r2ij calculated at pairs of loci (i, j), the overall R̂2 in the output is the weighted
average:

R̂2 =
1

W

k−1∑
i=1

k∑
j=i+1

wij r
2
ij , where W =

k−1∑
i=1

k∑
j=i+1

wij . (1.5)

With E(R̂2) given in (1.3) and R̂2 given in (1.5), let

R̂2 ′ = R̂2 − E(R̂2) =

{
R̂2 − 1/S − 3.19/S2 if S ≥ 30,

R̂2 − 0.0018 − 0.907/S − 4.44/S2 otherwise.
(1.6)

This R̂2 ′ (called R̂2-drift) is used to produce the estimate N̂e (assuming random mating model):

N̂e =
1

2R̂2 ′
·

 1/3 +

√
1/9 − (2.76)R̂2 ′ if S ≥ 30,

0.308 +

√
0.094864 − (2.08)R̂2 ′ otherwise,

(1.7)

where the square roots are assigned 0 if the radicants are negative. This is the Ne output from
LDNe.

In case of no missing data, all Sij are the same, and equal to S, hence

E(r̂2ij) = E(R̂2) for all i, j (no missing data) (1.8)

(b) Confidence Intervals

For parametric CI, N in (1.2) is referred to as the degree of freedom, used in Chi-square dis-
tribution to get the lower and upper bounds for R̂2. These bounds, subtracted by E(R̂2), give the
lower and upper bounds for R̂2 ′, which are then used to produce CI for N̂e.

For CI obtained by jackknife on samples, we evaluate R̂2 of the population for each individual
being removed. Those values of R̂2 will be used to obtain variance of R̂2, incorporated an empirical
correction factor 0.84. The CI is obtained for R̂2 ′, and then for N̂e.

Since the calculations of R̂2 is time consuming (most of run-time for the LD method lies on this
calculation), the run time will be enormous if the calculation of R̂2 is carried out separately for
each subpopulation. The implementation of this jackknife method, which avoids calculating those
R̂2 separately, is described in another document.

(c) Revised Method for Missing Data

The weight as given in (1.4) will be assigned to r̂2-drift for each pair of loci, that is, wij = nijS
2
ij

is the weight for
r̂2 ′ij = r̂2ij − E(r̂2ij), (1.9)
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where E(r̂2ij) is given in (1.1). Then the weighted average, denoted by R̂2 ′
0 , is

R̂2 ′
0 =

1

W

k−1∑
i=1

k∑
j=i+1

wij r̂
2 ′
ij , where W is given in (1.5)

=
1

W

k−1∑
i=1

k∑
j=i+1

wij r̂
2
ij −

1

W

k−1∑
i=1

k∑
j=i+1

wij E(r̂2ij)

= R̂2 − 1

W

k−1∑
i=1

k∑
j=i+1

wij E(r̂2ij). (1.10)

The first term in (1.10) is (1.5). The second term is the weighted average of the expected r̂2ij-sample.

If there are no missing data, this term is E(R̂2) as pointed out by (1.8), so R̂2 ′
0 is the same as R̂2 ′

given in (1.6).

Let N̂0
e be the initial estimate of N̂e calculated from R̂2 ′

0 as in (1.7). Note that when there are
missing data, this value will be slightly different from N̂e produced by LDNe because of the second
term in (1.10), which may differ from E(R̂2).

With the initial estimate N̂0
e , unless this value is negative or too large, we reassign the weight

of pair (i, j) by

w′ij =
nijS

2
ij(

Sij + 3N̂0
e

)2 . (1.11)

Now, the pairs (r̂2ij , w
′
ij) produces the weighted average:

R̂2 ′ =
1

W

k−1∑
i=1

k∑
j=i+1

w′ij r̂
2 ′
ij , (1.12)

which will be used for the final estimate of N̂e using equation (1.7).

If there is a recalculation of weights because of missing data, the weights apply to r̂2 ′ij , therefore

to both r̂2ij and E(r̂2ij). For parameter confidence interval, we find the confidence intervals for R̂2,

subtract by the weighted average of E(r̂2ij) to obtain CI for R̂2 ′, then the CI for N̂e.

2. Heterozygote Excess Method

(1) A. I. Pudovkin, D. V. Zaykin and D. Hedgecock, “On the Potential for Estimating
the Effective Number of Breeders from Heterozygote-Excess in Progeny,” Genetics
144: 383–387 (1996).

(2) O. L. Zhadanova and A. I. Pudovkin, D. V. Zaykin, “Nb HetEx: A Program to
Estimate the Effective Number of Breeders,” Journal of Heredity 99 (6): 694–695
(2008).
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(3) A. I. Pudovkin, O. L. Zhadanova and D. Hedgecock, “Sampling Properties of the
Heterozygote-Excess Estimator of the Effective Number of Breeders,” Conserv Genet
11: 759–771 (2010).

(a) One locus

At each polymorphic locus j, for each allele i whose frequency is pi, we calculate the observed
frequency Hobs

j (i) and the expected frequency Hexp
j (i) of heterozygotes having allele i. The observed

frequency Hobs
j (i) is obtained by counting heterozygotes in the population based on Nj , the number

of samples having data at this particular locus j. The expected frequency Hexp
j (i) is given in

Pudovkin’s paper:

Hexp
j (i) = 2pi(1− pi)

(
1 +

1

2Nj

)
.

For bias correction, the program follows the formula given in Zhdanova & Pudovkin’s:

Hexp
j (i) = 2pi(1− pi)

(
1 +

1

2Nj − 1

)
. (2.13)

The D index for excess or deficiency of heterozygote excess is given by

Dj(i) =
Hobs

j (i)−Hexp
j (i)

Hexp
j (i)

.

Let nj be the number of alleles at locus j. Then, the average Dj taken over all allele a at locus j is

Dj =
1

nj

nj∑
i=1

Dj(i).

(b) Multiple loci

Suppose there are k loci. The D index is taken as the weighted mean of all Dj(i). The weight

for each allele at locus j, as given in Zhdanova & Pudovkin’s, is wij =
√
Nj

nj−1
nj

. Since all alleles

of the same locus have the same weight, we can represent D in terms of the weighted mean of Dj ,
j = 1, . . . , k, where the weight Wj at locus j is the total weight of alleles at the locus:

D =
1

W

∑
Wj D`, W =

k∑
j=1

Wj , Wj = (n` − 1)
√
Nj . (2.14)

Then the effective number of breeders is

Nb =
1

2D
+

1

2(D + 1)
=

2D + 1

2D(D + 1)
. (2.15)

The following are printed in the “Frequency Data” additional output file:
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• The weighted and unweighted means, taken over all loci, of effective number of breeders Nb(`).

• The effective number of breeders based on the D index as the unweighted mean of D`, and as
the mean of all D`(i) in all loci.

(c) Confidence Intervals

In calculating confidence intervals, we follow Pudovkin et al. paper (Conserv. Genet. (2010) 11:
759 – 771), using formula (3) in the paper for standard error, which can be written as

SE =

√
(D[2] −D2)

I
· W 2

W 2 −W[2]
, (2.16)

where D, W are given in (2.14), W[2] is the sum of all w2
ij :

W[2] =
k∑

j=1

nj∑
i=1

(nj − 1)2Nj

n2
j

=

k∑
j=1

(nj − 1)2Nj

nj
=

k∑
j=1

W 2
j

nj
,

and

D[2] =
1

W

k∑
j=1

WjDj,2, Dj,2 =
1

nj

nj∑
i=1

d2ij ,

(Dj,2 is the average of d2ij , D[2] is the weighted average of Dj,2),

I =
k∑

j=1

(nj − 1) (I is the total number of independent alleles across loci).

Then the 95% confidence intervals are calculated using the t-distribution.

(d) Restrictions on Frequencies

Let q be a number between 0 and 0.5. We want to only consider alleles whose frequencies are at
least (including) q. The number of alleles K` now will exclude those whose frequencies are less than
q. Thus, if at a locus `, there is only one allele having frequency at least q, then its weight is zero,
the locus will be dropped from consideration. An allele i at locus ` whose frequency pi less than q
will be dropped, so D`(i) will not be calculated as a part of D`. However, a sample is not dropped
even if it contains only dropped alleles across all loci. (If samples having only dropped alleles are to be

dropped, then the frequencies of all alleles must be recalculated, and for those alleles that are not present

in the newly dropped samples, their frequencies will increase and then some dropped alleles may now have

frequencies at least q!) All the dropped alleles are lumped together as one allele. Thus, if a genotype
consists of two dropped alleles, then it is now considered as a homozygote.
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3. Molecular Coancestry Method

Tetsuro Nomura, “Estimation of Effective Number of Breeders from Molecular Coances-
try of Single Cohort Sample,” Evolutionary Applications (2008) pp 462–474.

(a) Formulas

As in Nomura’s paper, let n be the number of samples, L be the number of loci, nP be the total
number of distinct sample pairs (x, y), nP = 1

2n(n−1), fM,xy,` be the molecular coancestry between
samples x and y at locus ` as given in formula (4) of the paper, w` be the “weight” at locus `, W
be their sum, ŝ` be the average molecular coancestry over putative nonsib pairs at locus `. The
coefficient f̂1,xy as given in formula after (6) in the paper:

f̂1,xy =
1

W

L∑
`=1

w`
fM,xy,` − ŝ`

1− ŝ`
. (3.1)

The weight w` is given by

w` =
(1− ŝ`)

2(∑m
i=1 p

2
i

) (
1−

∑m
i=1 p

2
i

) , (3.2)

where pi is the frequency of allele i, i = 1, . . . ,m are all alleles at locus `.

Formula for f̂1 preceding formula (7) on Nomura’s, p. 464 (which gives the effective number of
breeders as 1

2f̂1,xy
) can be written as

f̂1 =
1

nP

∑
x<y

f̂1,xy =
1

nP

∑
x<y

1

W

L∑
`=1

w`
fM,xy,` − ŝ`

1− ŝ`
=

1

nPW

L∑
`=1

∑
x<y

w`
fM,xy,` − ŝ`

1− ŝ`

=
1

nPW

L∑
`=1

w`

1− ŝ`

∑
x<y

(fM,xy,` − ŝ`) =
1

nPW

L∑
`=1

w`

1− ŝ`

[∑
x<y

fM,xy,` −
∑
x<y

ŝ`

]

=
1

nPW

L∑
`=1

[
w`

1− ŝ`

∑
x<y

fM,xy,`

]
− 1

nPW

L∑
`=1

[
w`

1− ŝ`
(nP ŝ`)

]
(
∑

x<y ŝ` = nP ŝ`)

=
1

W

L∑
`=1

w`

[
1

1− ŝ`

(
1

nP

∑
x<y

fM,xy,` − ŝ`

)]
(3.3)

The last expression can be interpreted as the weighted average of

f̂`, 1 =
1

1− ŝ`

(
1

nP

∑
x<y

fM,xy,` − ŝ`

)
(3.4)

across loci, where the first term in the parentheses is the average of molecular indices at locus ` of
all sample pairs. Both terms in the parentheses are printed in the auxiliary file. The term in (3.4)
will be viewed as the “f̂1” value at locus ` with weight w` for finding the adjusted variance of the
overall f̂1 by Jackknife method.
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At each locus `, the estimate of ŝ` is to be found by determining distinct putative nonsib pairs;
the algorithm is described in the last paragraph on p. 464 in Nomura’s paper. Basically, the process
is to choose among eligible pairs, the one that yields the smallest average value of coancestry indices
taken across loci that differ from `. A maximum 20 putative nonsib pairs are listed in the auxiliary
file.

(b) Missing data

When determining putative pairs (x, y) at a locus, both x and y must have data at that locus.
In the process of determining if a pair (x, y) can be taken as a putative nonsib at locus `, we only
take average of the coancestry indices of (x, y) at other loci `′ 6= ` where the pair have full data.

Also, for the average
1

nP

∑
x<y

fM,xy,`, the summation includes only fM,xy,` where the pair (x, y)

have full data. Thus, the denominator nP is replaced by the number of (x, y), x < y, that have full
data.

(c) Restrictions on Frequencies

In this method, all alleles should be accepted; there is no restriction based on their frequencies.

(d) Confidence Intervals

We determine the confidence interval for f̂1, the weighted average of f̂`, 1 across loci as given in
(3.3) and (3.4), where the weight w` is given in (3.2), by Jackknife method on loci as mentioned
after (3.4). The confidence interval for f̂1 is then translated to the confidence interval for Ne.

4. Temporal Method

(1) Edward Pollak, “ A New Method for Estimating the Effective Population Size From
Allele Frequency Changes,” Genetics 1041: 531–548 (1983).

(2) Robin S. Waples, “ A Generalized Approach for Estimating Effective Population
Size From Temporal Changes in Allele Frequency,” Genetics 121: 379–391 (1989).

(3) Masatoshi Nei and Fumio Tajiama, “Genetic Drift and Estimation of Effective
Population Size,” Genetics 98: 625–640 (1981).

(4) Per Eric Jorde and Nils Ryman, “Unbiased Estimator for Genetic Drift and Effec-
tive Population Size,” Genetics 177: 927–935 (2007).

Unlike other methods, this method will require at least two population samples. The word
“sample” used in other methods to describe one member of the population. In this method, it will
be called an “individual.”

In other methods, only polymorphic loci are calculated. In this case, there may be a locus which
is monomorphic in one generation but polymorphic in the other; such locus will be in the calculation.
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In fact, only locus that is monomorphic in both samples for the same allele will be dropped. This
is the minimum requirement so that the terms used on the calculation of some measure F are all
well-defined.

The following notations will be used:

• Two samples: sample 1 and sample 2 are taken at generations t1 and t2.

• L is the number of accepted loci. (The accepted loci, besides the minimum requirement, may
also depend on frequency criteria.)

• ` (` = 1, . . . , L) is an accepted locus.

• m`, n` are the numbers of individuals having data at locus ` in sample 1 and sample 2,
respectively.

• K` is the number of alleles at locus ` (all alleles that appear in either sample are counted).

• i = 1, . . . ,K` is an allele at locus `. (The same index i may represent different alleles if cited
at different loci.)

• xi, yi are the frequencies of allele i at two samples: xi at generation t1 and yi at generation
t2.

• zi, zi are the unweighted and weighted means of xi, yi respectively:

zi = 1
2(xi + yi), zi =

m`xi + n`yi
m` + n`

.

(2m` xi is the total alleles i in sample 1, and 2n` yi is the total alleles i in sample 2.)

(a) Nei & Tajima

The change of frequencies of allele i in two samples is taken as

(xi − yi)
2

zi − xiyi
. (4.1)

The measure F (at locus `) is stated in Waples, formula (8):

F `
c =

1

K`

K∑̀
i=1

(xi − yi)
2

zi − xiyi
. (4.2)

The overall Fc is calculated as the weighted average of all F `
c , where the weight of each locus is K`,

the number of alleles in that locus. Then

Fc =
1∑L

`=1K`

L∑
`=1

K∑̀
i=1

(xi − yi)
2

zi − xiyi
. (4.3)

This is the average of all terms in (4.1) taken for all alleles in all loci.
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(b) Pollak

The change of frequencies of allele i in two samples is taken as

(xi − yi)
2

zi
. (4.4)

The measure F is given as formula (9) in Waples:

F `
k =

1

K` − 1

K∑̀
i=1

(xi − yi)
2

zi
. (4.5)

K` − 1 is the total number of independent alleles at locus `. The overall Fk is calculated as the
weighted average of all F `

k , where the weight of each locus is K` − 1. Then

Fk =
1∑L

`=1K` − L

L∑
`=1

K∑̀
i=1

(xi − yi)
2

zi
. (4.6)

The maximum value for both terms, (xi−yi)2
zi

and (xi−yi)2
zi−xiyi

is 2. We first look at the latter. From

x2i ≤ xi, y
2
i ≤ yi (since xi, yi ≤ 1),

xi + yi − 2xiyi ≥ x2i + y2i − 2xiyi = (xi − yi)
2 ≥ 0 ⇒ 1

2 (xi + yi)− xiyi ≥ 1
2(xi − yi)

2 ≥ 0,

we see that the denominator zi − xiyi of (xi−yi)2
zi−xiyi

is ≥ 0. It can be zero only if xi = yi = 0 or
xi = yi = 1, each of which is excluded since allele i must be present in at least one sample, and it is
not the only allele at both. Thus, the term is always well-defined. The first of the above inequalities

shows that (xi−yi)2
zi−xiyi

≤ 2. The equality happens, i.e. xi + yi − 2xiyi = x2i + y2i − 2xiyi (equivalently,

zi−xiyi = 1
2(xi− yi)

2), only if xi + yi = x2i + y2i , which implies xi = x2i , yi = y2i , and then xi, yi = 0
or 1. Since xi and yi cannot be both 0 or both 1, this implies that one of them should be 0 and the
other is 1. Therefore, from

0 ≤ (xi − yi)
2

zi
≤ (xi − yi)

2

zi − xiyi
≤ 2,

both terms attain maximum value 2 when xi = 1 and yi = 0, or when yi = 1 and xi = 0 (locus ` is
monomorphic with allele i in one sample and contains no allele i in the other). These are the only
cases that either term can take value 2. From the above inequalities, the numerator in the definition
of Fk is less than that of Fc. However, the denominator in Fk (which is

∑L
`=1K` − L) is also less

than that of Fc (which is
∑L

`=1K`); so there is no direct comparison of Fk and Fc.

(c) Jorde & Ryman

The change of frequencies of allele i in two samples in this method is taken as

(xi − yi)
2

zi(1− zi)
. (4.7)
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The measure F is given as in formula (9) in Jorde & Ryman’s paper:

F `
s =

∑K`
i=1(xi − yi)

2∑K`
i=1 zi(1− zi)

. (4.8)

For the overall Fs, the sums in both numerator and denominator are extended across all loci, that
is,

Fs =

∑L
`=1

∑K`
i=1(xi − yi)

2∑L
`=1

∑K`
i=1 zi(1− zi)

. (4.9)

From z2i = 1
4(xi + yi)

2 = 1
4(xi − yi)

2 + xiyi, we have

(xi − yi)
2

zi(1− zi)
=

(xi − yi)
2

zi − z2i
=

(xi − yi)
2

zi − xiyi − 1
4(xi − yi)2

≥ (xi − yi)
2

zi − xiyi
.

The rightmost term is a term in Fc. Strict inequality should hold unless xi = yi. However, the
overall Fs and Fc may not be compared.

From zi−xiyi ≥ 1
2(xi−yi)2 shown earlier (part (b)), we have zi−xiyi− 1

4(xi−yi)2 ≥ 1
4(xi−yi)2,

so if xi − yi 6= 0,
(xi − yi)

2

zi(1− zi)
≤ (xi − yi)

2

1
4(xi − yi)2

= 4.

Equality holds (that is, (xi−yi)2
zi(1−zi) = 4) if and only if zi − xiyi = 1

2(xi − yi)
2. This is the condition

that the terms in Fc and Fk attain maximum value 2 as seen in part (b). Therefore, all three terms
defining those measures F ’s attain their maximum values at the same time.

(d) Restriction on Frequencies

Let 0 < q < 0.5. The measures of Fc, Fk, Fs are based on alleles whose frequencies are at least
(and including) q. Since an allele i may have frequency < q in one sample but ≥ q in the other, there
are different ways to interpret if this allele has frequency at least q. The following are possibilities:

(1) Allele i has frequency at least q if xi, yi ≥ q.

(2) Allele i has frequency at least q if either xi ≥ q, or yi ≥ q.

(3) Allele i has frequency at least q if zi ≥ q.

(4) Allele i has frequency at least q if zi ≥ q.

It is clear that criterion (1) is more restricted than the rest. Criteria (3) and (4) are more restricted
than (2). Also, loci that are “nearly” monomorphic for allele i will be dropped, that is, if the
frequency of allele i is at least 1 − q using one of the criteria listed above. In the program, we use
criterion (4). This means that an allele i has frequency at least q (resp. 1 − q) if its frequency in
the combined samples is at least q (resp. 1− q).
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All alleles whose frequencies are less than q will be lumped together as one allele in the calcula-
tions of F ’s. Then K`, representing the total number of alleles at locus `, is the number of alleles
whose frequencies >= q, plus one, if there are alleles (no matter how many) whose frequencies are
< q. It should be noted that under this convention, if there is exactly one allele whose frequency
< q, then the calculation at this locus is the same as if there is no allele being dropped at all!

(e) Weighted harmonic mean sample size

The sample size that best characterizes the effects of random sampling error in the overall
estimator must reflect two factors: variation in sample size among loci (due to missing data), and
variation in information content at each locus. The appropriate measure is a weighted harmonic
mean of the single-locus sample sizes, with the weights proportional to the numbers of alleles.

First, at each locus, we find harmonic mean s` of individuals having data in two samples:

1

s`
=

1

2

(
1

m`
+

1

n`

)
.

Then find the weighted harmonic mean S of s` (` = 1, . . . , L). For Nei/Tajima and Jorde/Ryman
methods, the weight w` of a locus is the number of its alleles (w` = K`); it is also the weight assigned
to F `

c in the calculation of overall Fc in the Nei/Tajima method. For Pollak method, w` = K` − 1,
is the number of its independent alleles at locus ` used in the calculation of the overall Fk:

1

S
=

1∑L
`=1w`

L∑
`=1

w`

s`
. (4.10)

(f) Estimating N̂e, Plan II

For Pollak and Nei/Tajima temporal methods, there are two approaches for estimating Ne using
multi-allelic data. Both use the following general equations:

N̂e =
|t2 − t1|

2F ′
, where F ′ = F − 1

S
. (4.11)

(1) In the first approach, F ` ′ and N̂e
`

are calculated separately for each locus `,

F ` ′ = F ` − 1

s`
, N̂e

`
=
|t2 − t1|
2 F ` ′

,

and overall N̂e is computed as the weighted harmonic mean of the single-locus N̂e
`
:

1

N̂e
=

1∑L
`=1w`

L∑
`=1

w`

N̂e
`
. (4.12)

The weights w` (at locus `) is the number of alleles (K`; Nei and Tajima) or the number of
independent alleles (K` − 1; Pollak).
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(2) In the second approach, overall N̂e is computed from the overall F ′, which is computed from
an overall weighted harmonic mean S in (4.10) and an overall weighted mean F , i.e.,

F =
1∑L

`=1w`

L∑
`=1

w`F
`,

1

S
=

1∑L
`=1w`

L∑
`=1

w`

s`
,

F ′ = F − 1

S
, N̂e =

|t2 − t1|
2 F ′

.

It is easy to see that F ′ in the second approach is the weighted mean of F ` ′, and N̂e in both
approaches are identical.

For Jorde & Ryman method, F ′ is calculated from F based on formula (13) in Jorde & Ryman’s
paper:

F ′s =
Fs [1 − 1/(4S)] − 1/S

(1 + Fs/4) [1 − 1/(2S2)]
, (4.13)

where S is the harmonic mean of sample sizes of the two samples, and S2 is the sample size of
sample 2. Under the notations stated at the beginning, where sample sizes at a locus ` for samples
1 and 2 are denoted m` and n`, respectively, then S2 is n`, and S will be the harmonic mean of m`

and n`, which is s`. With the possibility of missing data, m` (resp. n`, s`) may not be identical
across loci, so we will take S as the weighted mean of s` as in (4.10), and S2 as the weighted mean
of n`.

(g) Adjusted for Plan I

For Pollak and Nei & Tajima temporal methods, the measure F0 is adjusted by adding the term

1

N
, where N is the census size at the first time of sampling.

For Jorde & Ryman method, F ′s is calculated by

F ′s =
Fs [1 − 1/(4S) + 1/(4N)] − 1/S + 1/N

(1 + Fs/4) [1 − 1/(2S2)]
, (4.14)

(h) Confidence Intervals

For Pollak and Nei&Tajima temporal methods, we find parameter confidence intervals for F using
Chi-square distribution where the degree of freedom is taken to be the total number of independent
alleles across loci. Then the confidence intervals for N̂e are derived.

As we see in Pollak and Nei & Tajima methods, the overall estimate of N̂e can be calculated as

the weighted average of single-locus N̂e
`
, so the Jackknife method on loci may be applied to obtain
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confidence interval for F , then CI for F ′ (by subtracting the inverse of weighted harmonic mean of
sample sizes), and finally, CI for N̂e.

For Jorde & Ryman method, the measure F ′s was calculated from both Fs and the harmonic
sample sizes in a non-linear way, so we find confidence intervals for F ′s in both parameter and jack-
knife methods. For parameter CI, we use the total number of independent of alleles as the degree of
freedom in Chi-square distribution. For Jackknife method, we follow the authors’ recommendations,
using equation (4.13) where references to each locus are sequentially removed, to obtain standard
error of the overall F ′. Then we apply normal distribution to obtain confidence intervals.

(i) Missing Data: Recalculation of Weights in Pollak Method

In the case of missing data, the weight at locus ` for measure F ` ′ is initially taken as

w` = (K` − 1) · s2` ,

which is used to calculate the weighted average of F ′, and then the initial N̂e0. Unless this value is
negative or too large, we recalculate the weight by

w` =
(K` − 1) · s2`(
s` · t + 2N̂e0

)2 , where t is the time gap, t = |t1 − t2|.

Then the rest of the calculations go the same way as before. Note that with this weight calculation,
and in the case of no missing data, the factor

s2`(
s` · t + 2N̂e0

)2
is invariant across loci, so setting the weights as above is the same as setting w` = (K` − 1).

As for Jackknife method, removing a locus will cause an estimate of N̂e for the remaining loci
with initial weights at those loci, and then a possibility of recalculation of weights to arrive at the
estimate of Fk and F ′k. We use values of Fk with one locus being removed to obtain the variance of
Fk and then the CI for Fk. Subtracted by the inverse of weighted harmonic mean across loci (the
recalculation weights) to obtain CI for F ′k and then CI for N̂e.
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