
Implementation of Jackknife Process on Samples

for Confidence Interval of Ne in LD Method

Let S be the set of all individuals being considered in the LD method. The LD cal-
culation will produce r2-value (square of the Burrows correlation coefficient r) averaged
over all eligible pairs of loci. To apply jackknife method to the sample set S to obtain
the confidence interval for effective population Ne, we will need to find r2-value for each
sample set where an individual s# is taken out from S, i.e., for sample set S − {s#}.
The process of finding r2 involves the examination of data in all ndividuals for each
pair of loci. If the original sample set S has N elements, then the obvious way to do
jackknife on S is to run the process of finding r2 for each set S − {s#} having (N − 1)
elements, the same way as doing with the whole set S. Then the execution time for
obtaining confidence interval of Ne to be almost N times of that of finding Ne itself.
This is quite prohibitive when the number of ndividuals or loci is large. In this note,
we show that r2 for all N sample sets S − {s#} can be obtained almost at the same
time that the calculation of r2 for the whole set S is finished. Under this scenario, the
time for finding r2 for the whole set S will be longer, however.

Assumption: All ndividuals should have data on at least two loci. This ensures that
taking out one individual will result in a different set of data when calculating the
Burrows coefficients.

1. Core of Algorithm

For a pair of loci, say locus 1 and locus 2, assume the set of all individuals in S
having data at both loci is S ′ (a subset of S) with N ′ individuals. Recall that the
Burrows disequilibrium ∆(A,B) for allele A at locus 1 and allele B at locus 2 (both
alleles satisfy frequency restriction if required) over sample set S is calculated against
only individuals having data at both loci, which is the set S ′ of N ′ individuals:

∆(A,B) =
1

2N ′

∑
s∈S′

XA(s)YB(s) − 2xAyB, (1)

where xA, yB are frequencies of allele A at locus 1, allele B at locus 2 (taken against
sample set S ′), and (letter ‘o’ denotes an allele different from A and B)

XA(s) =


0 if [s]1 = oo,
1 if [s]1 = Ao,
2 if [s]1 = AA,

YB(s) =


0 if [s]2 = oo,
1 if [s]2 = Bo,
2 if [s]2 = BB.
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Let hA, kB be frequencies of homozygotes AA, BB (taken against sample set S ′),
respectively. The square of Burrows correlation r is

r2(A,B) =


0 if (xA − 2x2A + hA) = 0

or (yB − 2y2B + kB) = 0,

∆2
(A,B)

(xA − 2x2A + hA) · (yB − 2y2B + kB)
otherwise.

(2)

Note: r2 is set to zero when either (xA − 2x2A + hA) = 0 or (yB − 2y2B + kB) = 0 (then no

need for calculating ∆). As pointed out in the discussion “On Burrows Coefficients”, this

means that the sample set S′ is either heterozygote Ao throughout at locus 1, or heterozygote

Bo throughout at locus 2. (To check if (xA − 2x2A + hA) is exactly zero, it may lead to a

wrong answer by rounding-off error. Instead, since 4N ′ 2(xA − 2x2A + hA) is theoretically a

whole number ≥ 0, we can round it off before checking if it is 0. Or, we can check that if

(xA − 2x2A + hA) < 1/8N ′ 2, then it is actually 0.)

Let s# be an element in S. We will determine the Burrows coefficients at the above
pair of loci, when s# is taken out of consideration, i.e., under sample set S# = S−{s#}.
There are two cases:

• s# has no data at one or both loci

• s# has data at both loci.

In the first case, this s# is outside the set S ′, so the set S ′ is also a subset of S#.
Therefore, there is no change in the calculations of the coefficients, i.e., the Burrows
disequilibrium and correlation coefficients corresponding to S# are ∆#

(A,B) = ∆(A,B) and

r#(A,B) = r(A,B). This is true for any allele pair (A,B) in this pair of loci. We now go to

the second case, i.e., s# is in the set S ′.

Trivial cases:

Consider the trivial case where r2(A,B) is assigned zero because the sample set S ′

is either heterozygote Ao throughout at locus 1, or heterozygote Bo throughout
at locus 2. By removing any individual, these conditions still hold for the rest, so
the corresponding r2 with one individual being removed is still zero (for this pair
of loci, with any individual removed).

A special case of the above is when N ′ = 1, i.e., for this pair of loci, only one
individual, say s, has data at both (it is then heterozygote at both loci). If an
individual s# is removed from S and s# = s, then there is no individual having
data at both loci for S# = S − {s#} = S − {s}, so no r2 for this locus pair.
However, for any other s#, we have r2 = 0 for S#.
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Now, we assume trivial cases do not happen, so there will be some calculations to
get r2 at each allele pair for each deleted individual s#, or r2 is not eligible.

Let x#A , y
#
B , h

#
A , k

#
B be the frequencies of alleles A,B, and homozygotes AA, BB,

respectively, corresponding to sample set S ′ − {s#}. (Note that for sample set S#, the

frequencies are taken against individuals having data at both loci in S#, which is S′−{s#}.)
We will derive these values based on xA, yB, hA, kA, and XA(s#), YB(s#). From

xA =
1

2N ′

∑
s∈S′

XA(s), or
∑
s∈S′

XA(s) = 2N ′xA,

one has

x#A =
1

2(N ′ − 1)

(∑
s∈S′

XA(s) − XA(s#)

)
=

1

2(N ′ − 1)
·
[

2N ′xA − XA(s#)
]
, (3)

and similarly,

y#B =
1

2(N ′ − 1)
·
[

2N ′yB − YB(s#)
]
. (4)

Since N ′ · hA is the number of homozygotes AA in the sample set S ′, we can see that

h#A =


1

N ′ − 1
·
[
N ′hA − 1

]
if XA(s#) = 2

(
[s#] = AA at locus 1

)
,

1

N ′ − 1
·N ′hA otherwise.

(5)

Similarly,

k#B =


1

N ′ − 1
·
[
N ′kB − 1

]
if YB(s#) = 2,

(
[s#] = BB at locus 2

)
,

1

N ′ − 1
·N ′kB otherwise.

(6)

Let P(A,B) be the summation term on the right side of (1):

P(A,B) =
1

2N ′

∑
s∈S′

XA(s)YB(s). (7)

The corresponding summation, with s# being taken out, is

P#
(A,B) =

1

2(N ′ − 1)

(∑
s∈S′

XA(s)YB(s) − XA(s#)YB(s#)

)

=
1

2(N ′ − 1)
·
[

2N ′P(A,B) − XA(s#)YB(s#)
]
. (8)
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The square of Burrow correlation r corresponding to sample set (S ′ − {s#}) is

(
r#(A,B)

)2
=



0 if
(
x#A − 2(x#A)2 + h#A

)
= 0

or
(
y#B − 2(y#B )2 + k#B

)
= 0,

(
P#
(A,B) − 2x#Ay

#
B

)2(
x#A − 2(x#A)2 + h#A

)
·
(
y#B − 2(y#B )2 + k#B

) otherwise.

(9)

With sample set S, when a pair of loci is picked, the set S ′ of individuals having
data at both loci should be determined, along with the alleles, their frequencies and
homozygotes (against sample set S ′), before any allele pair being picked for the calcu-
lations. That is, xA, yB, hA, kB are known for each pair of alleles (A,B). Thus, only
P(A,B) in (7) remains to be calculated to obtain Burrows coefficients at (A,B), for which
the values of XA(s#), YB(s#) are to be provided for all s# in S. As s# being picked
through S, x#A , y

#
B , h

#
A , k

#
B are obtained by (3) – (6) and stored, as well as the product

XA(s#)YB(s#), for each s#. With those values available, formulas (3) – (6), (8) imply
that r2 at pair (A,B), as given in (9), can be found for all sets S# = S ′ − {s#} when
the calculation of P(A,B) is finished.

Summary. (s# has data at both loci – non-trivial case) At the end of the calculation
of Burrows coefficients for an allele pair (at a particular locus pair, say pair (1, 2))
on the whole sample set S, we can immediately obtain Burrows r2 at that allele pair
(unless the pair is rejected as noted below), for all sample sets where an individual s#,
having data at both loci, is taken from S. Thus, after calculating r2 at all allele pairs
in locus pair (1, 2) under the whole set S, we obtain also Burrows r2 at all allele pairs
in the locus pair under each sample set S# = S−{s#}. By taking the average of those
r2 in each sample set S#, we obtain r2 for S# at locus pair (1, 2). In the process, the
following should be checked to see if allele pair (A,B) is accepted in the sample set S#.

(a) Eligibility Check 1. Allele pair (A,B) should be checked if it exists
in the sample set S# = S −{s#}. Its existence is equivalent to having
both x#A 6= 0 and y#B 6= 0. From (3) and (4), this is equivalent to

2N ′xA −XA(s#) 6= 0 and 2N ′yB − YB(s#) 6= 0.

(b) Eligibility Check 2. In the case A appears at locus 1, B appears at
locus 2, in the sample set S#, then the pair (A,B) will still not be
considered if locus 1 or locus 2 becomes monomorphic (only allele A
at locus 1 or only allele B at locus 2). Therefore, both loci should be
checked if they are not monomorphic with either A or B:

2N ′xA −XA(s#) 6= 2(N ′ − 1) and 2N ′yB − YB(s#) 6= 2(N ′ − 1).
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When the left sides of all inequalities above are not represented by integers,
we may round them to integers before comparisons, to avoid wrong answers
from computer rounding-off errors, or we may use

2N ′xA −XA(s#) < 1/8N ′ 2 ⇒ 2N ′xA −XA(s#) = 0,

2N ′xA −XA(s#) > 2(N ′ − 1)− 0.5 ⇒ 2N ′xA −XA(s#) = 2(N ′ − 1).

Ignoring these checks for the eligibility of pair (A,B) in the sample set S#

will lead to the assignment of r#(A,B) = 0 by (9) when (A,B) is actually not

counted in S#. This will decrease the average of r2 on S# taken over all
allele pairs.

The following example is an extreme case where the Eligibility Check 2 fails at all locus
pairs for a particular individual s#.

Example 1. Suppose sample set S has 2 alleles at each locus. Suppose there is an
individual s# such that all other individuals in S are homozygotes containing only one
type of allele at each locus. (This means that at each locus, which has two alleles, say
A1, A2, individual s# contains A1, but all other individuals are A2A2.) Then by taking
out individual s#, all loci become monomorphic, so there is no r2 for the sample set
S# = S − {s#}.

2. Effects from Frequency Restrictions.

When frequency restriction is imposed, represented by some c, 0 < c < 1
2
, a locus

is eligible if and only if

• it has no allele having frequency greater than 1− c,

• it has at least one allele with frequency at least c.

An allele at an eligible locus is eligible if its frequency is at least c. If there is an allele
having frequency greater than 1− c, then all other alleles have frequencies less than c.

Note. If a locus has exactly two alleles, then either the locus is
not eligible or both alleles are eligible.

The Burrows coefficients are only calculated for an eligible allele pair. To illustrate
the effects of frequency restrictions when an individual is removed, consider the following
examples.

Example 2. Assume that the sample set S has 20 individuals, and there are 3 different
alleles in each locus (e.g., A1, A2, A3 at locus 1). Suppose the first allele has only one
copy and the second has 3 copies, and that they only occur in the first two individuals
(e.g., the first two individuals are A1A2 and A2A2 at locus 1). The rest, 18 individuals,
are homozygotes with the third allele (e.g., they are all A3A3 at locus 1). Frequencies
of the three alleles at each locus are (1/40, 3/40, 36/40) = (0.025, 0.075, 0.9).
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(i) Suppose c = 0.03. Then only the second and third alleles are accepted for sample
set S. By removing the homozygote individual with the second allele, the fre-
quencies are (1/38, 1/38, 36/38). Only the third allele is eligible: c ≤ 36/38 <
1− c = 0.97, the second allele is no longer eligible, in the remaining individuals.

(ii) Suppose c = 0.026. Again, only the second and third alleles are accepted for
sample set S. Removing the same individual as in (i), the frequencies of the three
alleles taken against the rest are (1/38, 1/38, 36/38). All alleles are now eligible
in the remaining individuals.

The next example is slightly modified from the above.

Example 3. The sample set S also has 20 individuals, and there are also 3 different
alleles in each locus. Suppose each of the first two alleles has two copies, which only oc-
cur in the first two individuals (so the first two individuals are either both homozygotes
or both heterozygotes). The rest are homozygotes with the third allele. Frequencies of
the three alleles at each locus are (2/40, 2/40, 36/40) = (0.05, 0.05, 0.9).

(i) Suppose c = 0.06. Then only the third allele is eligible under the sample set
S. Removing any of the first 2 individuals, the frequencies of the three alle-
les taken against the rest will be (1/38, 1/38, 36/38), or (0, 2/38, 36/38), or
(2/38, 0, 36/38) (the first case is the case that the first two individuals are het-
erozygotes). The third allele now has frequency greater than 1 − c = 0.94 in
each locus, so all loci become ineligible. Therefore, no Burrows calculation for the
reduced sample set.

(ii) Suppose c = 0.052. Again, only the third allele is eligible under the sample set
S. By removing any of the last 18 individuals, the frequencies of the three alleles
taken against the rest will be (2/38, 2/38, 34/38), all are greater than 0.052, so
all alleles are eligible under the reduced sample set. The first two alleles, which
were rejected in the original sample set S, are now eligible.

Observations.

(1) In Example 2(i), an eligible allele might become ineligible (or just disappeared)
when an individual s# is removed. This is the case stated in Eligibility Check 1, but
with frequency restriction inserted. Example 3(i) tells us that some allele may become
dominant that makes a locus similar to being monomorphic. This is homologous to the
case stated in Eligibility Check 2.

An allele only becomes ineligible in the remaining individuals when that allele
also exists in the removed individual. If an individual s# containing allele A is
removed, then frequency of A in the remaining individuals is decreased, unless
its original frequency is at least 1

2 and the removed individual is heterozygote.
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Thus, if allele A is at the borderline of being rejected in S, removing an individual
containing A has a chance of having A rejected from the remaing individuals.

An allele A not in the removed individual will have its frequency increased, and

may cause the locus to become almost monomorphic with allele A (Example

3(i)). However, even with allele A in the removed individual, frequency of A will

increase if the original frequency is more than 1
2 ; so the locus may still become

monomorphic or almost monomorphic with A.

We revise the Eligibility Check when frequency restriction c is imposed. Suppose allele
pair (A,B) at locus pair (1, 2) is being considered, and an individual s# is removed.
An allele pair (A,B) is eligible in S# = S − {s#} if and only if the following hold:

Eligibility Check:


2c(N ′ − 1) ≤ 2N ′xA −XA(s#) ≤ 2(1− c)(N ′ − 1)

2c(N ′ − 1) ≤ 2N ′yB − YB(s#) ≤ 2(1− c)(N ′ − 1).
(10)

(2) Examples 2(ii) and 3(ii) tell us that there may be alleles ineligible under the
frequency restriction c in the whole set S, but become eligible when an individual is
removed. However, for jackknife method, removing one entry is to remove some data
existed in the original set, not to add data into it. When an allele is ineligible for
the calculations of Burrows coefficients under the original set S, its data are ignored.
Therefore, that allele should also be ignored when an individual is removed from S.

In the calculations here, the r2 for a reduced sample set S# are obtained
only for allele pairs being used for the whole set S. Thus, the above rule is
automatically observed.

If the calculations of Burrows coefficients are carried out separately for each
sample set S# in the same way as they are carried out for the whole sample
set S (as mentioned in the beginning, the “obvious” way), then they may
also include alleles that are not eligible for the whole set S (unless some
conditions are imposed during the calculations).

(3) [On Independent Alleles] As the number of independent alleles plays a role
in weighting r2 at each pair of loci to obtain the weighted average of r2 over all pairs
in the original sample set S, we need to determine appropriate weighting scheme when
one individual is removed.

For a pair of loci, the number of independent alleles in one locus is the number of
eligible alleles, or the total number of alleles minus one, whichever is smaller. As we
pick a pair of alleles for calculating r2 in S, we need to know if the pair is also eligible
in S#. Suppose there are (m × n) pairs that are eligible in S; m alleles at locus 1
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and n alleles at ocus 2. Among those, there are m# alleles at locus 1 and n# alleles
at locus 2, which are eligible in S#. Frequencies of those eligible alleles under S# are
given by (3) and (4); so the sum of eligible alleles in each locus can be readily obtained.
For example, let σ be the sum of those m# eligible alleles at locus 1. The number of
independent alleles taken at locus 1 is to be based on this sum σ as stated below.

(a) If σ = 1, then the m# eligible alleles (under S#) seen from the pairs considered
under S are all alleles that appear at locus 1 in S#. In this case, (m#−1) is taken
as the number of independent alleles at locus 1. This is also the true number of
independent alleles at locus 1 if we consider S# the same way as we do with S.
Note that the number of independent alleles at this locus under the whole sample
set S may be bigger. (Although all alleles at locus 1 in S# are part of eligible pairs

considered under S, but there may be an eligible allele pair in S where the first allele is

not eligible at locus 1 in S#. This happens when among all individuals in S, only the

removed individual s# contains that allele. In such case, m > m#, so the number of

independent alleles in S at locus 1 is at least m#.)

When there is no frequency restriction, then σ = 1, the (weighted)
coefficients r2 for all S# obtained through this process are the same as
if they are obtained separately with each S#.

(b) If σ < 1, then m# is taken as the number of independent alleles. Since those m#

alleles are eligible under S# and the sum of their frequencies is less than 1, the
number of independent alleles when investigating S# directly will be at least m#.
The following are cases that the two values may conincide or differentiate.

(i) There are alleles eligible in S# but not eligible in S as Examples 2(ii), 3(ii)

show. Then the true number of independent alleles at locus 1 under S# may
be bigger than m#. However, since those alleles are not considered under
S# as stated in (2), it is appropriate to not count them here.

Note that in this case, it may still happen that m > m#, since there may be
eligible alleles in S but not eligible in S#. Thus, the number of independent
alleles in S may be bigger than m#, but cannot be less under this choice.
(The number of independent alleles in S can be less than the number of that in

S# if S# is investigated directly when there are several alleles eligible in S# but

not eligible in S.)

(ii) All eligible alleles in S# are also eligible in S. Then m# is the number of
all eligible alleles in S#. Since the sum of frequencies under S# of those m#

alleles is less than 1, we have that m# is the true number of independent
alleles in S# if S# is considered directly.

Thus, except in cases as stated in (b)(i), the number of independent alleles at
locus 1 in S# based on σ is the same as having S# considered directly.
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3. Combination with the Simplified Calculations of Burrows r2

In the discussion “On Burrows Coefficients”, we point out that to have r2-value for
a pair of loci, then in most cases, it is not necessary to carry pointwise the calculations
of coefficients at all eligible pairs of alleles.

Suppose there are m alleles A1, . . . , Am at locus 1, n alleles B1, . . . , Bn at locus 2.
They are all alleles satisfying frequency restriction with respect to the locus pair (1, 2).
Suppose at a particular allele Ai, Burrows coefficients are already calculated pointwise
for Ai pairing with (n − 1) alleles at locus 2, say, ∆(i,1), . . . ,∆(i,n−1) are calculated
for pairs (Ai, B1), . . . , (Ai, Bn−1). If no allele is dropped at locus 2 (B1, . . . , Bn are all
alleles at locus 2), the Burrows disequilibrium ∆i,n) at (Ai, Bn) can be derived directly
from the known ones at previous (n− 1) pairs:

∆(i,n) = −
n−1∑
j=1

∆(i,j). (11)

In the case n = 2 (i.e., there are only 2 alleles at locus 2 and none is dropped), then

r2(i,2) = r2(i,1).

Suppose all alleles at locus 2 are eligible in the original sample set S, i.e., B1, . . . , Bn

are all alleles at this locus. Let an individual s# be removed. We want to determine
r2 at pair (Ai, Bn) for the remaining sample set S#. We assume the pair (Ai, Bn) was
checked to be eligible in S#.

(i) In the case n = 2, B1 is then also eligible at locus 2 since B2 is (see Note at §2).
The coefficient r2 at (Ai, B2) is the same as that at (Ai, B1), which was found
when r2 was calculated for the original set S, i.e.,

r#2
(i,2) = r#2

(i,1).

(ii) For n > 2, we will need to find P#
(i,n) based on ∆(i,n), which was obtained in

(11). (When Burrows coefficient ∆ is calculated pointwise, we obtain P given in (7) as

part of ∆, then derive P# from P as shown in (8) before applying (9).) Write xi, yn
for frequencies xAi

, yBn of Ai, Bn at loci 1 and 2, respectively, under the original
sample set S. From (7),

P(i,n) = ∆(i,n) + 2xiyn,

we have by (8) that

P#
(i,n) =

1

2(N ′ − 1)
·
[
2N ′

(
∆(i,n) + 2xiyn

)
− XAi

(s#)YBn(s#)
]
.

Then from (9), with all terms are now known, we can obtain r#2
(i,n).

9



4. Discrepancy of r2 from direct calculations

As before, let S be the sample set, s# be an individual, and S# = S − {s#}. For
a pair of loci, S ′ is the set of all individuals in S having data at both loci (S ′ may
vary with pairs of loci), and N is the number of individuals in S ′. We will concentrate
on one particular pair of loci, and determine when r2 and the weight associated with
this pair obtained through this process for the set S# may differ from those calculated
directly with the set S#. Two factors associated with a locus are used for the weight
based on the individuals having data at both loci: the number of independent alleles
and the number of individuals having data. The weight for the pair will be the product
of independent alleles at the two loci with the square of number having data at both.
Note that the second factor is only needed when there are missing data in the sample
set S.

If s#, the individual taken out, is missing data at one of the two loci, then the set of
individuals having data at both loci is the same under S or under S#. As a result, infor-
mation on r2 for this locus pair is the same under S or under S#. Since information on
r2 under S# obtained by this process is inherited from that of S, there is no difference
for r2 and its weight obtained by this process or obtained by working with S# directly.
Thus, we only consider the case that s# having data at both loci. The number of indi-

viduals having data at both loci under S# is (N − 1), observed by this process or by
working with S# directly. Therefore, the difference in assigning weight for a locus pair
by this process and by working directly with S# falls into assigning independent alleles.

At a locus in the pair, as noted in Observation (3) in §2, the number of independent
alleles assigned from this process is exactly the same as from working directly with S#,
except possibly when there are alleles eligible in S# but ineligible in S. This latter case
is also the only case that for S#, eligible allele pairs are different by this process and
by direct calculations with S# (which will have more), thereby the only case that r2 for
this locus pair can have different values. Thus,

[D1] At a pair of loci accepted under S, the only case where either

r2 or its weight under S# can have different values between this

process and direct calculations is when (at least) one locus contains

an allele that is eligible under S# but ineligible under S.

Suppose the frequency restriction is determined by c, 0 < c < 1
2
. As before, let

xA, x
#
A be the frequencies of A under S and S#, respectively. Allele A is eligible in S#

but ineligible in S if xA < c ≤ x#A . We will determine when this can happen.
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Lemma 1. Consider the following condition on frequency restriction c:

There exists an integer n such that 2(N − 1)c ≤ n < 2Nc. (12)

(a) Suppose the above condition holds. Then allele A is ineligible under S but eligible
under S# if and only if A satisfies the following.

(i) The removed individual s# (having data at both loci) does not contain A.

(ii) The number of copies of A in N individuals is exactly n.

(b) Conversely, if the condition (12) fails, then every allele that is ineligible under S
must also be ineligible under S#.

Proof. First, we note that the length of the interval from 2(N − 1)c to 2Nc is strictly
less than 1,

0 < 2Nc − 2(N − 1)c = 2c < 1,

so there is at most one integer in the interval [2(N − 1)c, 2Nc]. Thus, there is at most
one integer n satisfying (12).

(a) Suppose condition (12) holds.

Let A be an allele that is ineligible under S but eligible under S#. We want to show
(i) and (ii). Let m be the number of copies of A under S. Since A is ineligible, the
frequency xA under S is strictly less than c:

xA =
m

2N
< c ⇒ m < 2Nc.

Let k be the number of copies of A under S#. Then k ≤ m. The frequency of A under
S# is at least c since A is eligible under S#:

m

2(N − 1)
≥ k

2(N − 1)
= x#A ≥ c ⇒ 2(N − 1)c ≤ k ≤ m.

Combining the last parts of the two equations above, we obtain

2(N − 1)c ≤ k ≤ m < 2Nc.

Since n is the only one integer satisfying (12), we must have

k = m = n.

This implies both (i) and (ii).
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Conversely, let A be an allele satisfying both conditions (i) and (ii). By (ii), the
number of copies of A in the N individuals having data under S is n, and then by (i),
the number of copies of A in those individuals under S# is also n, so by (12),

xA =
n

2N
< c, x#A =

n

2(N − 1)
≥ c.

Thus, A is ineligible under S but eligible under S#.

(b) Suppose (12) fails, i.e., there is no integer n such that 2(N − 1)c ≤ n < 2Nc.
Let A be an allele that is ineligible under S. We show that A is also ineligible under
S#.

Let n be the number of copies of A in the N individuals having data at both loci
under S. By ineligibility of A,

n

2N
= xA < c, or n < 2Nc,

the second inequality in (12) holds. Since (12) fails, n cannot satisfy the first inequality,
so we must have n < 2(N − 1)c. Hence,

x#A ≤
n

2(N − 1)
< c,

which means that A is ineligible under S#.

Corollary 1. If 2Nc is an integer, then any allele that is ineligible under S must
also be ineligible under S#.

Proof. Let m = 2Nc; m is an integer. Since there is a most one integer in the interval
between 2(N − 1)c and 2Nc as mentioned in the beginning of the proof of the Lemma,
m is the unique integer in that interval. Thus, we cannot have any integer n such that
2(N − 1)c ≤ n < 2Nc, i.e., (12) fails. The conclusion then follows from part (b) of the
Lemma.

Example 4. In this example we assume that the sample set S has N individuals and
there are no missing data. Since there are no missing data, any locus has the same
information when pairing with different loci; so the eligibility of an allele at a locus is
based solely on that locus alone.

(i) N = 50 and c = 0.025. Then 2Nc = 2.5 and 2(N − 1)c = 2.45. Condition (12)
fails, so any allele ineligible under S must also be ineligible under S# when any
individual s# is removed.
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(ii) N = 41 and c = 0.025. Then 2Nc = 2.05 and 2(N − 1)c = 2. Condition (12)
satisfies with n = 2. Thus, an allele is ineligible under S but eligible under S# if
and only if it has 2 copies in S and is not in the removed individual.

(iii) N = 40 and c = 0.025. then 2Nc = 2 is an integer. The Corollary tells us that
any allele ineligible under S must also be ineligible under S# when any individual
s# is removed.

At a pair of loci, it is possible that one locus is not eligible under S, but eligible
under S#. Then the pair is not eligible under S, so will be ignored in S# under this
process, although it plays a role in calculating Burrows coefficients for S# when working
directly with S#. Therefore, r2 obtained for S# from this process may be different from
direct calculations on S#. This happens in one of the following.

[D2] All alleles at a locus have frequencies strictly less than c under S,

but some are eligible under S#. The whole locus is then ineligible
under S (so will not be considered under S# by this process), but is
eligible when S# is considered directly.

In extreme case, it could happem that all alleles in S# are elligible
under S# but ineligible under S (they satisfy conditions in Lemma 1(a)).

In Example 4(ii), if the 41 individuals have 41 alleles, each one has 2
copies, then the locus is ineligible under S. Any alleles that are not in
the removed individual will be eligible under S#.

[D3] One locus has a dominant allele under S (i.e., its frequency surpasses

1− c), but the allele is not dominant under S#.

The following analogous to Lemma 1 is to deal with the last case.

Lemma 2. Let c∗ = 1− c. Consider the following condition:

There exist 2 integers n such that 2(N − 1)c∗ < n ≤ 2Nc∗. (13)

(a) Suppose condition (13) fails. Then

• There is a unique integer n satisfying inequalities in (13).

• An allele A is dominant in S but not in S# if and only if A satisfies the
following.

(i) The removed individual s# is homozygous AA.

(ii) The number of copies of A in N individuals is exactly (n+ 1).

13



(b) Suppose condition (13) holds. If a locus pair under S (the number of individuals

having data at this pair is N) is rejected because of one locus having a dominant
allele, then that locus pair is also rejected under S#.

Proof. From 0 < c < 1
2
, we have 1

2
< c∗ < 1. Since the length of the interval

(2(N−1)c∗, 2Nc∗] is strictly between 1 and 2, the interval contains at least one integer,
but no more than two:

1 < 2Nc∗ − 2(N − 1)c∗ = 2c∗ < 2.

Thus, if (13) fails, then there is exactly one integer satisfying inequalities in (13).

(a) Suppose condition (13) fails. Then there is only one integer n satisfying in-
equalities in (13) as mentioned above.

Let A be an allele that is dominant in S but not dominant in S#. We want to show
(i) and (ii). Let m be the number of copies of A under S. Since A is dominant, the
frequency xA under S is strictly more than c∗:

m

2N
= xA > c∗ ⇒ 2Nc∗ < m.

Let k be the number of copies of A under S#. The number of allele A in the removed
individual is at most 2, so k ≤ m ≤ (k + 2). The frequency of A under S# is at most
c∗ since A is not dominant under S#:

k

2(N − 1)
= x#A ≤ c∗ ⇒ k ≤ 2(N − 1)c∗.

Combining the last parts of the two equations above, condition (13), and the fact that
the removed individual contains at most 2 copies of A (implying m ≤ k+ 2), we obtain

k < n < m ≤ k + 2.

This yields
n+ 1 = m = k + 2.

Therefore, both (i) and (ii) hold.

Conversely, let A be an allele satisfying both conditions (i) and (ii). We want to
show A is dominant in S but not in S#. By (ii), the number of copies of A in the
N individuals having data under S is n + 1. Since n is the unique integer satisfying
inequalities in (13), we must have (n+ 1) > 2Nc∗, so

xA =
n+ 1

2N
>

2Nc∗

2N
= c∗.

14



Thus, A is dominant in S. Now by (i), the number of copies of A in those individuals
under S# is (n+ 1)− 2 = n− 1. Since n is the unique integer satisfying inequalities in
(13), we must have (n− 1) ≤ 2(N − 1)c∗, so

x#A =
n− 1

2(N − 1)
≤ 2(N − 1)c∗

2(N − 1)
= c∗.

Thus, A is not dominant in S#.

(b) Suppose (13) holds. Then there are two integers satisfying inequalities in (13).
Denote n as the smaller one:

2(N − 1)c∗ < n < n+ 1 ≤ 2Nc∗.

Suppose A is a dominant allele in S. Let m be the number of copies of A in S. Then

m

2N
= xA > c∗ ⇒ m > 2Nc ≥ (n+ 1) ⇒ m ≥ n+ 2.

Thus, the number of copies of A in S# is at least n, so

x#A ≥
n

2(N − 1)
> c∗.

Therefore, A is also dominant in S#.

Corollary 2. Suppose 2(N − 1)c∗ is an integer. If a locus pair (with N being the

number of individuals having data at both loci) is rejected under S because of one locus
having a dominant allele, then the pair must also be rejected under S#.

Proof. Suppose 2(N − 1)c∗ is an integer. Since the distance from 2(N − 1)c∗ to 2Nc∗

is more than 1, there must be another integer n satisfying inequalities in (13). Thus,
the condition holds, so the conclusion comes from part (b) of the Lemma.

Example 5. Sample set S has N individuals and there are no missing data.

(i) N = 21, c = 0.05. Then c∗ = 0.95, 2Nc∗ = 39.9, and 2(N − 1)c∗ = 38. Condition
(13) fails, there is only one integer n = 39 satisfying 38 < n ≤ 39.9. Thus, if
an allele has 40 copies in S and the removed individual is homozygote with that
allele, then the allele is dominant under S but not dominant under S#.

Note that 2Nc = 2.1, 2(N − 1)c = 2, so condition (12) holds with n = 2.
Therefore, if an allele has 2 copies and not in the removed individual, then that
allele is ineligible under S but eligible under S#.

If there are such two alleles, then they are the only alleles in S. Removing a
homozygote with the first allele, then the two alleles become eligible under S#.
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(ii) Same c as in (i), but N = 20. Then 2Nc∗ = 38, and 2(N − 1)c∗ = 36.1. Corollary
2 holds, so any locus pair that is rejected under S because of a dominant allele at
one locus must also be rejected under S#.

If the discrepancy conditions [D1] – [D3] do not occur, the process of finding r2

for S# as weighted average over pairs of loci (the initial weight is based on number of
individuals having data and independent alleles) from this process will be the same as
working directly with S#.

In the case of missing data in S, the LD program will recalculate the weights of locus
pairs, taking into account the initial estimate of Ne (calculated from initial weighted
average r2) if this estimate Ne is not infinite, and then recalculate the weighted average
r2 across locus pairs. However, the calculations of r2 for S# under this process do not
attempt such recalculations of the weights for locus pairs under S#.

[D4] When there are missing data, if LD program is run separately

with input data from S#, the weights for pairs of loci in S# will

be adjusted on the initial estimate of Ne for S#, so the overall r2

in its output may be different from the one calculated under S by

this process.

If there is no frequency restriction, then obviously, conditions [D1] – [D3] will not occur.
However, r2 for S# obtained under this process may still differ from the r2-output of
S# if LD program is run on the data set S# when there are missing data.

5. Excluding Singleton Alleles

For this type of restriction on a pair of loci under S, any singleton allele in the pair
will be ineligible. As before, suppose the number of individuals having data at both
loci is N . The frequency restriction for this pair can be represented by any c satisfying:

1/2N < c ≤ 1/N.

In fact, an allele will have frequency 1/2N if it is a singleton, and at least 1/N if it is
not. Then an allele is a singleton if and only if its frequency is less than c. An example
of such c is c = 1/(2N − 1). In the case N = 1 [then 1/(2N − 1) = 1], the unique
individual having data at both loci in S is either homozygote (the pair is ineligible) or
contains only singleton alleles at each locus; so the pair is skipped.

Now, remove an individual s# to have reduced sample set S#. We try to set fre-
quency restriction c such that it will work for both S and S#, so that the discussion
in §2 is still applicable. If the removed individual has no data at either locus, then
the number of individuals having data in the resulting set S# is also N . As a result, c
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as given above is also a criterion to determine if an allele is a singleton in S#. If the
removed individual has data at both loci, then the number of individuals having data
at both loci in S# is (N − 1); so to exclude singleton alleles in S#, we can choose any
c that satisfies

1/2(N − 1) < c ≤ 1/(N − 1).

Thus, regardless of whether the removed individual s# has full data or not, if c satisfies

1/2(N − 1) < c ≤ 1/N,

then an allele in a locus is a singleton under S or S# if and only if its frequency is less
than c. The condition for having such c is 2(N−1) > N or N > 2. From 2(N−1) > N ,
we have

2(N − 1) > 2N − 2.5 > N,

so we can choose c = 1/(2N − 2.5).

For the case N = 2, take c as stated in the first paragraph of this section, c =
1/(2N − 1) = 1/3. If the removed individual s# is missing data at one locus, then
number of individuals having data in S# is still N , and the c above will reject singleton
alleles in S#. If s# has full data, then only one individual in S# has full data. In this
case, the locus pair is still eligible under S# set by frequency restriction c = 1/3 if this
individual is heterozygote at both loci, where both alleles are singletons. Although the
locus pair is accepted under S# with this c, the heterozygosity in S# implies that the
Burrows correlation for this pair is zero under S#. Under general rule as stated at the
end of the first paragraph, the pair should be rejected, instead of being counted in the
weighted average r2 for S#. However, the weight for this pair is small in the calculation
for overall r2, so the effect is minimal. Note that if any of the 2 alleles at this individual
is a singleton in S, then it was rejected under S; and this falls into case [D1] in §4.

Under this frequency restriction by rejecting singleton alleles, a pair of loci is not
eligible under S if and only if at least one of the following occurs.

• One locus is homozygote throughout.

• One locus has exactly 2 alleles, one of which is a singleton.

• All alleles in one locus are singletons.

If an individual s# is removed, then any of the conditions above will hold under S#, so
the pair will be rejected in S# as well. Therefore the discrepancies D[2] and D[3] will
not happen. The discrepancy D[1] will not happen unless N = 2 as described in the
previous paragraph.
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