
On Burrows coefficients

Consider two loci, say, locus 1 and locus 2. Let A be an allele at locus 1, and B be
an allele at locus 2. Let S be the set of sampled individuals, where N is assumed to
be the number of individuals having full data at both loci. Let xA denote frequency of
allele A, hA denote the frequency of homozygote AA. Similarly, yB, kB are frequencies
of allele B and homozygote BB at locus 2.

For an individual s ∈ S, let [s]1 and [s]2 denote the genotypes of individual s at
locus 1 and locus 2, respectively. Let

XA(s) =


0 if [s]1 = oo,
1 if [s]1 = Ao,
2 if [s]1 = AA,

YB(s) =


0 if [s]2 = oo,
1 if [s]2 = Bo,
2 if [s]2 = BB.

(1)

(Letter ‘o’ stands for any allele different from A at locus 1 and from B at locus 2.) Then
the Burrows disequilibrium is (corresponding to allele A at locus 1, allele B at locus 2)

∆(A,B) =
1

2N

∑
s∈S

XA(s)YB(s) − 2xAyB. (2)

The expected values of XA, YB are

E
[
XA

]
=

1

N

∑
s∈S

XA(s) = 2xA, E
[
YB
]

=
1

N

∑
s∈S

YB(s) = 2yB.

Thus,
∆(A,B) = 1

2

(
E
[
XAYB

]
− E

[
XA

]
E
[
YB
])

= 1
2

cov (XA, YB). (3)

Now, at locus 1, if we let

HA(s) =

{
1 if [s]1 = AA,
0 otherwise,

then E [HA] = hA and X2
A = XA + 2HA. Thus,

σ2
X := Var (XA) = E

[
X2

A

]
− E [XA]2 = E [XA] + 2E [HA] − E [XA]2

= 2 (xA + hA) − (2xA)2 = 2
(
xA − 2x2A + hA

)
. (4)

Similarly, at locus 2,

σ2
Y := Var (YB) = 2

(
yB − 2y2B + kB

)
. (5)
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The Burrows correlation coefficient is

r(A,B) =
∆(A,B)√

xA − 2x2A + hA ·
√
yB − 2y2B + kB

. (6)

From (3), (4), and (5), the expression for r in (6) can be written as

r(A,B) =
1
2

cov (XA, YB)√
(1/2)σ2

X ·
√

(1/2)σ2
Y

=
cov (XA, YB)

σX σY
= corr (XA, YB). (7)

Remark. The right side defining r in (6) is undefined when the denominator is zero,
which happens when either xA − 2x2A + hA = 1

2
Var (XA) = 0 or yB − 2y2B + kB =

1
2
Var (YB) = 0. Variance of a random variable is zero only when it is a constant. Thus,

if the denominator is zero, then either XA or YB must be a constant throughout. Since
XA, YB can only take values 0, 1, 2, the following are the only possibilities that result in
zero denominator:

• XA ≡ 1: Locus 1 is heterozygote Ao throughout (xA = 1
2
, hA = 0).

• XA ≡ 2: Locus 1 is homozygote AA throughout (xA = 1, hA = 1).

• YB ≡ 1: Locus 2 is heterozygote Bo throughout (yB = 1
2
, kB = 0).

• YB ≡ 2: Locus 2 is homozygote BB throughout (yB = 1, kB = 1).

(Here, we already assume allele A exists at locus 1 and allele B exists at locus 2, so XA

and YB are not identically zero.)

In the LD program, only loci that have at least two alleles will be considered; so
the homozygosity conditions above will not occur. Therefore, zero denominator only
happens in either of the following:

• Locus 1 is heterozygote Ao throughout (xA = 1
2
, hA = 0).

• Locus 2 is heterozygote Bo throughout (yB = 1
2
, kB = 0).

When either Var (XA) or Var (YB) is zero, the covariance cov (XA, YB) is also zero.
Then, the Burrows correlation coefficient r(A,B) is set to zero.

2



Dependency of Burrows Coefficients

Suppose A1, . . . , Am are all alleles at locus 1, and B1, . . . , Bn are all alleles at locus
2. Let Xi = XAi

, Yj = YBj
be defined as in (1) (i = 1, . . . ,m; j = 1, . . . , n). Then

X1 + · · · +Xm = 2, Y1 + · · · + Yn = 2. (8)

From

m∑
i=1

cov (Xi, Yj) = cov

(
m∑
i=1

Xi, Yj

)
= cov (2, Yj) = 0, for j = 1, . . . , n,

and

n∑
j=1

cov (Xi, Yj) = cov

(
Xi,

n∑
j=1

Yj

)
= cov (Xi, 2) = 0, for i = 1, . . . ,m,

we have, with ∆(i,j) ≡ ∆(Ai,Bj) = 1
2

cov (Xi, Yj),

m∑
i=1

∆(i,j) = 0 for j = 1, . . . , n,

n∑
j=1

∆(i,j) = 0 for i = 1, . . . ,m.

 (9)

This implies that

Fact 1. The sum of all Burrows disequilibrium coefficients taken over all
allele pairs at the two loci is zero.

Let ∆ be the (m×n)-matrix whose entries are ∆(i,j) (i = 1, . . . ,m; j = 1, . . . , n). Then
from (9), each entry ∆(p,q) (1 ≤ p ≤ m, 1 ≤ q ≤ n) can be deduced from other entries
of the same row or of the same column:

−
m∑

i = 1,
i 6= p

∆(i,q) = ∆(p,q) = −
n∑

j = 1,
j 6= q

∆(p,j) (10)

(The first equality comes from the first equation in (9) where j is replaced by q. The
second equality comes from the second equation where i is replaced by p.) Then, starting
with the second expression above,

∆(p,q) = −
n∑

j = 1,
j 6= q

∆(p,j) = −
n∑

j = 1,
j 6= q

(
−

m∑
i = 1,
i 6= p

∆(i,j)

)
=

n∑
j = 1,
j 6= q

m∑
i = 1,
i 6= p

∆(i,j).
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The rightmost sum is the sum of all entries ∆(i,j) outside of row p and column q. Those
are Burrows disequilibrium coefficients taken at pairs of alleles (Ai, Bj) where Ai 6= Ap

and Bj 6= Bq. Thus,

Fact 2. The Burrows disequilibrium coefficient at a pair of alleles (A,B)
is the sum of coefficients taken at all pairs distinct from (A,B).

In the case m = 2, i.e., locus 1 has exactly 2 alleles A1, A2. Then

Var (X2) = Var (−X1 + 2) = (−1)2 Var (X1) = Var (X1).

(Here, the identity Var (aX + b) = a2Var (X) is used.) Combining with the first equation
in (9) where m = 2, we have for any allele Bj at locus 2 (j = 1, . . . , n),

r(1,j) + r(2,j) = 0 or r(2,j) = − r(1,j) for j = 1, . . . , n. (11)

(Here, r(i,j) =
2∆(i,j)√

Var (Xi)Var (YBj
)

is the Burrows correlation coefficient at pair (Ai, Bj).)

Then
2∑

i=1

n∑
j=1

r(i,j) = 0.

Fact 3. If one locus has exactly 2 alleles, then only half of Burrows cor-
relation coefficients need to be calculated, the other half is of opposite sign.
The sum of all coefficients is zero.

In the case that locus 2 also has exactly 2 alleles (n = 2), then

r(1,2) = − r(1,1) = r(2,1) = −r(2,2) ⇒ r2(1,1) = r2(1,2) = r2(2,1) = r2(2,2).

Fact 4. If each locus has exactly 2 alleles, then the square of Burrows
correlation coefficient is the same for all 4 allele pairs taken at the two loci.

Remark.

(1) In the LD program, for a pair of loci, only individuals having data at both loci
will be considered. The frequencies of alleles and homozygotes are calculated against
those individuals. Therefore, all the results in the previous discussion hold true.

(2) Facts 3 and 4 are related to the comparisons of the denominators in Burrows
correlations, which involve the variances. However, when those variances are zeroes,
the Burrows correlation r is undefined as a ratio (the ratio is in the form 0/0). Unless
the pair of alleles is rejected, it needs to be assigned to a certain value, which will have
some effect on the overall value for r2.
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• If it is assigned to be zero, just as the correlation between the two random variables
when one has zero variance, then these facts still hold. This is what the LD
program follows. This assignment has the effect of decreasing the overall r2 for
the pair of loci.

• If it is assigned to be a nonzero value, e.g., as one of the extreme values: −1 or 1,
then Fact 4 still holds, but Fact 3 does not. These extreme values yield r2 = 1,
so the assignment has the effect of increasing the overall r2 for the pair of loci.

Frequency Restriction Case

Let 0 < c < 1
2
. In LD program, only loci where there is at least one allele having

frequency at least c and there is no allele with frequency surpassing (1 − c), will be
considered in the pairings. For a pair of such loci, frequencies of alleles are recalculated
against individuals having data at both loci, and only those alleles satisfying frequency
conditions as said above will be accepted. As a result, some pair of loci may be rejected
if one locus contains no allele satisfying frequency conditions (even though each of them
was accepted at the first step).

Suppose there are m alleles at locus 1 and n alleles at locus 2. Among those,
m∗ alleles at locus 1 and n∗ alleles at locus 2 meet the frequency conditions. It is
possible that m∗ = 1 or n∗ = 1 (e.g., if c = 0.1 and there are 3 alleles at locus 1
whose frequencies are 0.06, 0.06, and 0.88, then m∗ = 1). Let A1, . . . , Am∗ be alleles
at locus 1 and B1, . . . , Bn∗ be alleles at locus 2 that satisfy frequency conditions. Let
∆ be the (m∗ × n∗)-matrix whose entries are ∆(i,j) corresponding to pairs (Ai, Bj)
(i = 1, . . . ,m∗, j = 1, . . . , n∗). The following are possibilities.

(1) No allele is dropped at either locus, i.e., m∗ = m,n∗ = n. Then all of the above
conclusions still hold.

(2) One locus has no allele being dropped, and there are some alleles being dropped
at the other, i.e., either (m∗ = m,n∗ < n) or (m∗ < m,n∗ = n), exclusively.

(i) Case m∗ = m, n∗ < n.

Since A1, . . . , Am are all alleles at locus 1, we have the first equation in (8)
holds, so does the first equation in (9). However, the second equation in (9)
may not hold since YB1 + · · ·+ YBn∗ is not a constant. The sum of entries in
a row is still zero, but the sum of entries in a colum may not. As a result,
only the first equality in (10) holds (here, we replace p in (10) by m):

∆(m,q) = −
m−1∑
i=1

∆(i,q), q = 1, . . . , n∗.
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There are (m − 1) × n∗ coefficients ∆(i,q), (i = 1, . . . ,m − 1, q = 1, . . . , n∗)
need to be calculated; and only n∗ coefficients can be deduced.

Now, we evaluate Facts 1–4 where the coefficients are calculated on eligible
alleles at the two loci, i.e., ∆ is an (m∗ × n∗)-matrix (instead of m × n).
Since m∗ = m, the row sum is zero for every row of ∆, so Fact 1 still holds;
however, Fact 2 may not. Fact 3 will hold if m∗ = 2. Fact 4 may not hold
with m∗ = n∗ = 2 since n > n∗.

(ii) Case m∗ < m, n∗ = n.

Only the second equality in (10) holds (replace q in (10) by n = n∗):

∆(p,n) = −
n−1∑
j=1

∆(p,j), p = 1, . . . ,m∗.

As in (i), Fact 1 still holds, but Fact 2 may not. Fact 3 still holds if n∗ = 2.
Fact 4 may not hold with m∗ = n∗ = 2.

(3) Both loci have some alleles being dropped. Then Burrows disequilibrium coeffi-
cients need to be calculated for all pairs.

In general, if m is the number of independent alleles at locus 1 and n is the number
of independent alleles at locus 2, then the number of Burrows disequilibrium
coefficients that need to be calculated is m × n. For locus 1, m = m − 1 if
m∗ = m, and m = m∗ if m∗ < m. Similarly, n = min{n∗, n− 1}.

In LD program, the product of numbers of independent alleles, m × n, is used
as a weight of the locus pair for the calculation of the weighted average of r2

across pairs of loci. As noted above, this is the number of Burrows disequilibrium
coefficient that need to be calculated; the rest can be deduced.

A particular case in frequency restriction is made such that singleton alleles will be
rejected. That is, c is set such that an allele is not a singleton if and only if its frequency
is at least c. With N being the number of individuals having data at both loci, c can
be any number satisfying

1/2N < c ≤ 1/N.

When N = 1 (then 1/2 < c < 1), S has only one individual having full data, this
individual is either homozygote or contains 2 singleton alleles at each locus, then the
locus pair will be rejected. We can take, for example, c = 1/(2N − 1).
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Remark.

In LD code, the Burrows disequilibrium ∆ is adjusted by the number of individuals,
i.e., ∆ in formula (2) is replaced by

∆̃(A,B) =
S

S − 1
·∆(A,B) =

S

S − 1
· 1
2

cov (XA, YB)

whenever S > 1. Then the Burrows correlation coefficient in the code is based on the
adjusted value ∆̃(A,B) of ∆. Thus, in terms of r(A,B) as given in (6) and (7), the adjusted
correlation coefficient is

r̃(A,B) =
S

S − 1
· r(A,B) =

S

S − 1
· corr (XA, YB).

Since the difference between the original coefficient and the adjusted one is a multiplica-
tive constant, all the results (which involve only sums of coefficients) can be applied to
the adjusted coefficients. To increase efficiency when the adjusted coefficients for allele
pairs are not needed for other uses (e.g. output to a file), the adjusted factor can be
skipped in the Delta function, but introduced after the averages of the coefficients ∆, r

being taken. In such case, the factor for the average of r2 should be
[
S/(S − 1)

]2
.
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